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Abstract. We construct a family of isotropic spin-s quantum chains consisting of sums of 
operators satisfying a Temperley-Lieb algebra. Exact values for the infinite lattice limit 
of the ground-state energy per site and for the (non-zero) gap to the lowest energy excited 
state follow from the Temperley-Lieb equivalence with a Bethe ansatz soluble XXZ model. 
The family of spin chains includes the biquadratic spin-1 model. 

In a recent paper [l] ,  we obtained the ground state energy per site and the lowest 
energy gap of the biquadratic spin-1 Hamiltonian: 

HbQ= - c ( s i . s i + l ) *  (1) 

in the thermodynamic limit. These results followed as a consequence of an exact 
mapping of the biquadratic Hamiltonian to the quantum Hamiltonian version of the 
nine-state Potts model at its self-dual point. Specifically, we showed that, on a chain 
of M sites with free ends, ( 1 )  could be expressed as a sum of a set of operators, U,, 
1 = 1,2, . . . , M - 1, that satisfied a Temperley-Lieb algebra [2,3]: 

u:=J;F U, (2) 

UlUI** U1 = U, (3)  

[ U,, UI.1 = 0 ll-1'1>1 (4) 

with q = 9. Explicitly, 

M-1 

HbQ=- U , - M + l  
I = l  

with 

U , = ( s , . s , + , ) ' - l  l = l , 2  ,..., M-1.  ( 6 )  
The algebra defined by (2)-(4) is precisely the same algebra that arises in the q-state 
Potts model. Moreover, the self-dual quantum Hamiltonian version of this model is 
also a simple sum of the Temperley-Lieb operators, thereby implying an equivalence 
between the spectra of the two Hamiltonians [4]. 

0305-4470/90/010015+07$03.50 @ 1990 IOP Publishing Ltd L15 



L16 Letter to the Editor 

An immediate question is whether generalisations of this equivalence exist for 
higher spin chains, perhaps involving the (2s + l)*-state Potts model. In this letter we 
answer this question in the affirmative. The spin-s Hamiltonians we find are identical 
to the SU( n)-invariant Hamiltonians shown recently by Affleck [ 5 ]  to be equivalent 
to the n2-state Potts model if we set n = 2s + 1. In addition, our spin-s representations 
of the Temperley-Lieb algebra are special cases of the representations considered by 
Owczarek and Baxter [ 6 ] .  However, our derivation is rather different from that of 
Affleck or Owczarek and Baxter and we carry the Temperley-Lieb equivalence one 
step further to relate the spin chains to the X X Z  chain, thereby obtaining exact 
expressions for the ground-state energy per site and the lowest energy gap of the spin-s 
Hamiltonian in the thermodynamic limit. 

Consider a chain of M sites with free ends and populate each site with a spin-s 
variable, s,. We seek a Hamiltonian 

where the set of operators {U,,, = U(s,,, * s,+~)} satisfy the Temperley-Lieb algebra 
defined by (2)-(4) for a suitable value of the parameter q. Without loss of generality, 
we can assume U ( X )  is a polynomial of degree 2s: 

2s 
U ( X ) =  UjX’. 

j = O  

Clearly, the third commutation rule (4) is trivially satisfied. To satisfy the first 
relation (2) we observe that U, is diagonal in the basis that diagonalises the square 
of the total spin ST = s, + smtl since s, - s , + ~  = i(S’,- s’, Hence the eigen- 
values of U, are U ( X , ) ,  S = 0, 1, . . . ,2s, where 

(9) 
However, from (2) the eigenvalues of U, are 0 or 6. Hence substituting (8) in (2), 
we find that the coefficients {U,} must satisfy the system of linear equations: 

x, = is( s + 1) - s( s + 1 ). 

2s 

u j x j , = p ,  s = 0,1,. . .2s  
j = O  

where ps = 0 or 4. In principle, these equations possess 225+1 possible solutions. 
We will be primarily concerned with the solution corresponding to the choice 

if S = O  
if S > O  

for which 

* s  x-x, 
U ( X ) = G  S = l  n (-) X o - x s  

where X ,  is defined by (9). 
As constructed, we have 

U,ISM) = u ( S ) ( S M )  

where 

s = 0,1, . . . , 2 s  M = - S , - S + l ,  ..., S - 1 , s  
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and 
if S=O 
if S > 0. 

u ( S )  = 

To establish the ternary relation (3),  it is necessary to first write U,,, in a basis that 
diagonalises s‘, and s;,,. If we denote these states Imlm2), we can write 

where the sum is over the values of S and M specified in (14)  and (ssm,m21SM) 
denote the Clebsch-Gordan coefficients, which vanish unless M = m ,  + m,. Hence 
U,Im,m,) = 0 unless m1 + m, = 0, in which case 

1 ( - l ) s -“ /mf ,  -m‘)  
f i ( - l ) s - m  U,,,lm, - m )  = 

2 s + l  ” 

where we have used the result (see, e.g., [7]) that 
(-1)- 

(ssm, - m 100) = - m* 
We can now establish the ternary relation (3) .  consider U ,  U2U11m,m,m3), where 

U ,  acts on m ,  , m, and U, acts on m,,  m3 .  Since we require m, + m2 = 0, it suffices to 
consider 

fi( -1)- 
U,U2Ul)m,  -mm‘)= c ( - 1 ) s - p ~ 1 ~ 2 1 p ,  -pm7 

2 s + 1  p 

where we have used (17).  Under the action of U, the only non-zero term corresponds 
to p = m’. Hence, again using (17),  we obtain 

On the other hand, 
f i ( - l ) s - m  U,lm, -mm”) = c (-l)s-plP, -pm? 2s+1 p 

so that to satisfy (3) we require 
v 5 = 2 s + 1 .  

With this value of q we can simplify (12)  to read: 
2 2s 

U ( X )  = (- 1 [ &3 n ( X  -?is( S + 1) + s( s + 1)).  
S = l  

Substituting this expression in (7) completes our construction of a spin-s Hamiltonian 
that consists of a sum of Temperley-Lieb operators. Some explicit evaluations of (23)  
are shown in table 1. 

Table 1. Explicit formulae for the Temperley-Lieb operators for s =z 2 .  

S U 
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As in our earlier work we can relate this Hamiltonian to the quantum Hamiltonian 
version of the (2s + 1)2-state Potts model by introducing the alternative representation 
of the Temperley-Lieb operators [4,8]: 

(24) 

where L =  M / 2  and q = (2s + 1)*. (We assume M is even.) The operators RI  and RI 
at site 1 obeys a Z(q)-algebra: 

Rlrl =w-'R/RI (26 )  

fllR: = wR:RI (27) 
Rp= Rp = 1 

with w = e2"i'q. The Potts Hamiltonian [9, 101 

can then be expressed? as [4] 

The coupling parameter A is the analogue of temperature in the conventional statistical 
mechanical formulation of the Potts model. The self-dual transition point of the Potts 
model corresponds to A = A ,  = 1 with A > 1 corresponding to the ordered phase ( T < TJ. 
At the self-dual point we recover a simple sum of the Temperley-Lieb operators. 

With q = ( 2 s +  1)2 ,  the Hamiltonians (29) on L sites and (7) on M = 2L sites with 
U given by (23) are both represented by (2s + 1)2L x (2s + matrices. Hence on a 

j n i t e  chain o f M  = 2L sites with free ends the spectra of (7) with U given by (23) and 
HPotts( L, A = 1) are equivalent. Taking the thermodynamic limit gives 

( 3 1 )  
e s  - 1 potts 

0 - 2 e o  ( A = l )  

where e f ,  is the ground state energy per site of ( 7 )  in the limit M + m  and e y ( A )  
that of (29) in the limit L + m .  This latter quantity can now be calculated for A = 1 
by introducing the further representation [2,3] of the Temperley-Lieb operators in 
terms of Pauli spin operators: 

(32) 
where cosh 8 =f&= s +;. For general A, this definition of the U results in an 
equivalence between the Potts Hamiltonian and a staggered X X Z  chain. For A = 1, 
the staggering vanishes and we obtain the equivalence: 

U l = ~ ( a ~ o ~ + l + a ~ a i v , l ) + ~ c o s h  e ( l  -ala;+,)+isinh e(a;+, -a;) 

Hpotts(L, A = 1) e Hxxz(2L) -$(2L- 1 )  cosh 8 (33) 
where 

t Note that we have chosen a different normalisation of IfPoltr from that in [4]. 
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is the Hamiltonian of an X X Z  model on a chain of M sites with fields fp and -fp 
applied to the two free ends. In our present case 

A = -s -1 2 and p = $ / ( 2 ~ + 3 ) ( 2 ~ - 1 ) .  (35) 

The X X Z  Hamiltonian (34) is solvable by the Bethe ansatz [ l l ,  121. In particular, 
the ground-state energy can be evaluated [13] and is the same as obtained for the 
usual periodic boundary conditions [14]. Hence from (33) and (31), we obtain 

for the ground-state energy of (7) in the limit M + CO. For s = 1,  we recover our earlier 
result [l], while for s = f ,  (36) reduces to that for the isotropic spin-; Heisenberg 
antiferromagnet [ 141. 

This equivalence of (7) to an X X Z  chain leads also to an expression for the energy 
gap to the first excited state above the ground state. Using the X X Z  result [15, 16, 131, 
the lowest-lying gap As of (7) in the limit M + CO is 

where r = ePe. In our earlier work [ l ]  we substantiated this result for s = 1 with 
numerical data from direct finite lattice calculations. More recently, Klumper [ 171 has 
confirmed this expression for s = 1 by a direct calculation on the corresponding 
three-state vertex model. 

Our discussion until now has been based on one particular solution of the equations 
(10) for the coefficients { uj} that define U. As noted earlier, these equations possess 
a total of 22s+1 solutions, all of which by construction satisfy the first condition (2) of 
a Temperley-Lieb algebra. A natural question is whether any of these other solutions 
also satisfy the ternary condition (3). Before we discuss this question in general, we 
make two simple observations. Firstly, choosing either 

ps  = 0 for all S or p s  = J;? for all s (38) 

gives the trivial solutions U = 0 and U = J;?, respectively. Secondly, choosing p o  = 0, 
ps=J;? ,  S>O leads to the polynomial C ( X )  =J;?- U ( X ) ,  where U ( X )  is given by 
(23). Hence we generate the same spin-s Hamiltonian, apart from a shift in energy 
and change of spin. However, while this change of sign does not affect the algebraic 
properties of the Hamiltonian, it does reverse the spectrum and hence significantly 
changes the physical properties of the ground state. Indeed, Itoyama et ul [18] have 
argued recently that the ground state and spectrum of the bilinear-biquadratic spin-1 
Hamiltonian: 

H = {cos e(si .  sitl) + sin e(si .  si+1)2} (39) 
I 

in the vicinity of 8 = ~ / 2 ,  which corresponds to (1) but with an interaction of the 
opposite sign, could exhibit a complex eigenspectrum involving level crossings in the 
ground state and spontaneous parity violation. (See also [ 191.) Unfortunately, our 
algebraic methods do not shed any light on these interesting and important questions. 

We turn now to the other less trivial solutions of (10). While we have been unable 
to prove that all of these solutions fail to satisfy the ternary condition (3), we are able 
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to exclude a physically important subset. This subset is generated by the choice 

P K  =4 K Z O  

Ps = 0 S Z  K 

which results in the polynomial 

By construction U ' K '  is, up to the multiplicative factor of 6, the projector onto the 
eigenspace of ST with eigenvalue S = K and hence is a natural generalisation of (23). 

( m  { m;l U' )I m ,  m2) 

= 4 S(  mi + m i ,  m ,  + m2)(ssmI m21 K ,  m ,  + m2)(ssmim;lK, m ,  + m2). 

In the basis Im,m2), we have 

(42) 

Substituting this representation in (3) implies that for the ternary relation to hold we 
require 

S 

[(ssm, M - m (  KM)1*l(ssM - m, m31 K, M +  m3 - m)I2 = q-' (43) 

for all ME{-K, - K + l , .  . . , K - 1 ,  K }  and all m,E{-s ,  - s + l , .  . . , s-1, s}, where q 
is a constant (dependent only on s). It is now a straightforward but algebraically 
tedious calculation using known properties [7] of the Clebsch-Gordan coefficients to 
show that this is impossiblet. While (41) thus does not generate a Temperley-Lieb 
Hamiltonian, these Hamiltonians are still of physical interest and, indeed, have arisen 
previously. Specifically, for s = 1 (41) generates for K = 1 and K = 2 the Hamiltonians 
discussed by Sutherland [20] and Affleck et a1 [21,22], respectively. 

We conclude with one final remark concerning the case s = ;. In this case the most 
general Hamiltonian, respecting rotational invariance in spin space, can be written 

m = - s  

From an explicit study of the two-magnon problem, Chubukov and Kveschenkov [23] 
(see also Lai and Bonner [24]) recently claimed that (44) was integrable if the couplings 
y and S satisfied 

(45) g2-u - 
2 Y - 1 .  

A known example is the Bethe ansatz integrable Takhtajan-Babujian model [25,26] 
which satisfied (45) with 

(46) 
For the family of spins chains discussed in this letter, we note that the spin-; Hamiltonian 
generated by (23) (see also table 1 )  satisfies the Chubukov-Kveschenkov relation (45) 
with 

(47) 

-16 y =  -6 27 * 

y =  -20 S =  -16 
93 9 3 .  

t Specifically, we chose M = K - 1, m, = s and M = K, m3 = s - 1 and showed that we could not satisfy (43) 
with a fixed value of q. 
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